# Magnetic Properties of Ammonia Intercalates of Some IV B and V B Transition Metal Disulfides\*

# H. J. M. BOUWMEESTER,† G. A. WIEGERS,‡ and C. F. VAN BRUGGEN

Laboratory of Inorganic Chemistry, Materials Science Center, Nyenborgh 16, 9747 AG Groningen, The Netherlands

Received December 29, 1986; in revised form March 2, 1987

Intercalates  $3R-VS_2NH_3$  and  $3R-TaS_2NH_3$ , isostructural with  $3R-TiS_2NH_3$ , are described for the first time. Magnetic properties of  $3R-TiS_2NH_3$ ,  $3R-VS_2NH_3$ , and  $2H-TaS_2NH_3$  respectively are interpreted in terms of a charge transfer (in agreement with an ionic model) from the intercalant to the lowest conduction band which consists mainly of  $e_g$ ,  $a_{1g}$  and  $a'_1$  transition metal d states. © 1987 Academic Press, Inc.

### Introduction

Lewis base molecules, such as NH<sub>3</sub>, pyridine, and long chain amines are easily intercalated in the van der Waals gap of layered transition metal dichalcogenides,  $TX_2$  (1-3).

Based on the work of Schöllhorn and Zagefka (4) it is now believed that the intercalation of ammonia is accompanied with a redox reaction,

 $2 \text{ NH}_3 \rightarrow \text{N}_2 + 6 \text{ H}^+ + 6 \text{ e}^-$ 

the overall intercalation reaction being

$$TX_{2} + (8x + y) NH_{3} \rightarrow (TX_{2})^{6x^{-}} (NH_{4}^{+})_{6x} (NH_{3})_{y} + x N_{2}^{2}$$

In the resulting ionic structure part of the ammonia is present as NH<sup>4</sup> ions solvated

0022-4596/87 \$3.00

Copyright © 1987 by Academic Press, Inc.

All rights of reproduction in any form reserved.

by neutral molecules NH<sub>3</sub>; 6x = 0.1-0.3, 6x + y = 1. A similar reaction scheme has been proposed for pyridine-intercalated phases because of the formation of dipyridine (5).

Bernard *et al.* (6) came to the same conclusion from an analysis of the products released during deintercalation of 3R-TiS<sub>2</sub>NH<sub>3</sub> (in the following we will use this formula, disregarding the presence of NH<sup>4</sup><sub>4</sub>); the amount of NH<sup>4</sup><sub>4</sub> per unit TiS<sub>2</sub> was estimated to be 0.2.

The magnetic susceptibilities of  $NH_3$ -intercalated transition metal dichalcogenides are also in favor of a charge transfer to the  $TX_2$  sandwiches (to be discussed below).

The structure of the ammonia intercalates of the transition metal disulfides is such (Fig. 1) that ammonia is present in sites with trigonal prismatic coordination by sulfur atoms of neighboring sandwiches  $TS_2$ ; the coordination of the transition metal atoms by sulfur atoms is the same as in the host for intercalation, viz., a trigo-

<sup>\*</sup> Dedicated to Dr. Franz Jellinek.

<sup>†</sup> Present address: Sentron-VOF, Roden, The Netherlands.

<sup>‡</sup> To whom correspondence should be addressed.



F1G. 1. (1120) section of the structures of the hosts for intercalation and the NH<sub>3</sub> intercalates. (a) Transition metal dichalcogenide with 1T structure (left) and their NH<sub>3</sub> intercalates (right); (b) 2H-TaS<sub>2</sub> (left) and 2H-TaS<sub>2</sub>NH<sub>3</sub> (right). Both trigonal-prismatic sites are (statistically) occupied by NH<sub>3</sub> (large circles). Small circles represent transition metal atoms.

nally distorted octahedron for intercalates based on transition metal disulfides with  $1T-TS_2$  structures (TiS<sub>2</sub>, ZrS<sub>2</sub>) and a trigonal prism for intercalates based on 2H-NbS<sub>2</sub> and 2H-TaS<sub>2</sub> (1-3).

From X-ray and neutron powder diffraction of 2H-TaS<sub>2</sub>ND<sub>3</sub> (7–9) and 3R-TiS<sub>2</sub>ND<sub>3</sub> (10) it was found that ND<sub>3</sub> (and ND<sup>+</sup><sub>4</sub>) occupies statistically the trigonal prismatic sites in the van der Waals gap. It was not possible to discriminate between ND<sub>3</sub> and ND<sup>+</sup><sub>4</sub>. A model with a spherically symmetric distribution of deuterium around nitrogen with the N-D distance equal 1.0 Å explained the intensities of the powder lines reasonably well but it is quite well possible that the true distribution of deuterium differs in some detail from a spherically symmetric distribution. Dynamically this model corresponds to isotropically rotating  $ND_3$  and  $ND_4^+$ .

NMR studies of ammonia-intercalated 2H-TaS<sub>2</sub> and 1T-TiS<sub>2</sub> are in favor of a model with the C<sub>3</sub> axis of NH<sub>3</sub> molecules in the midplane between sulfur layers; the molecules are spinning rapidly around the trigonal axis and the C<sub>3</sub> axis also performs reorientations mainly in the basal plane (11–14). Rapid spinning and/or reorientation of the C<sub>3</sub> axis and rapid diffusion of the molecules was found by Riekel *et al.* (15) using quasi-elastic neutron scattering of 2H-TaS<sub>2</sub>NH<sub>3</sub>.

The now commonly accepted ionic model explains the observed midway position of nitrogen between sulfur layers in terms of an ion-dipole interaction of a central  $NH_4^+$  group with neighboring  $NH_3$  molecules. From this model one expects fast proton exchange; this was, however, not found from NMR (11-14). Bernard *et al.* (6) suppose that the protons are in fixed positions due to the interaction with the negatively charged sulfur layers. It is, however, also possible that the proton is not bound to the ammonia molecule but present as H<sup>+</sup> or as neutral H inside the TS<sub>2</sub> sandwich. This possibility is supported by the observation that D in D<sub>x</sub>NbS<sub>2</sub> and H in H<sub>x</sub>TaS<sub>2</sub> are in the plane of the transition metal atoms (*16*). Our neutron diffraction results of TiS<sub>2</sub>ND<sub>3</sub> are, however, not in favor for this view (*10*).

In this paper we report on the structures of the  $NH_3$  intercalates of  $1T-VS_2$  and  $1T-TaS_2$  prepared for the first time. The magnetic properties of the intercalates are discussed in relation with those of the hosts.

## **Experimental**

The transition metal dichalcogenides were prepared from the elements.  $1T-VS_2$ was obtained by oxidation of LiVS<sub>2</sub> with I<sub>2</sub> in acetonitrile solution (17).  $1T-VSe_2$  was prepared at rather low temperature (450°C) in order to prevent the growth of a selfintercalated sample V<sub>1+x</sub>Se<sub>2</sub>. Since the ammonia intercalates are hygroscopic and exhibit a considerable NH<sub>3</sub> pressure at room temperature, all sample handling had to be carried out in an atmosphere of dry NH<sub>3</sub> gas. This was done by conventional gas handling methods; NH<sub>3</sub> gas of 1 atm was dried using a column filled with powdered KOH.

The intercalation of powdered  $TX_2$  with NH<sub>3</sub> was performed by condensing an excess of dry NH<sub>3</sub> gas into a 120-ml autoclave containing about 4 g of the dichalcogenide. The autoclave was then sealed and left at room temperature for 2–4 days. The NH<sub>3</sub> pressure raised to 10 atm. Afterward the excess NH<sub>3</sub> was removed under a pressure of 1 atm using a gas handling system. The

product was transferred into a sampling tube from which samples for X-ray diffraction and magnetic measurements could easily be obtained. To avoid contact with air the coupling was performed as fast as possible and under a continuous outlet of  $NH_3$ gas.

The samples were analyzed by X-ray diffraction using a Debye-Scherrer camera (Cu $K\alpha$  radiation) with the samples enclosed in sealed capillaries; intensities were estimated.

Attempts to prepare  $NH_3$  intercalates of IT-TiSe<sub>2</sub> and IT-VSe<sub>2</sub> were not successful. Since the dichalcogenides showed rather broad diffraction lines after the experiments we feel that intercalation might have taken place at 10 atm, followed by deintercalation at 1 atm.

## **X-Ray Diffraction**

The cell constants of the intercalates of this study are summarized in Table I. X-ray powder data of  $3R-VS_2NH_3$  and  $3R-TaS_2NH_3$  are given in Tables II and III. The cell constants of  $2H-TaS_2NH_3$  are in good agreement with those of Chianelli *et al.* (7); less agreement is present for  $3R-TiS_2NH_3$ , also reported by Chianelli *et al.* (7). This is probably due to a different composition; those of Chianelli *et al.* refer to a somewhat smaller NH<sub>3</sub> content.

Intercalates of 1T-VS<sub>2</sub> and 1T-TaS<sub>2</sub> were not described before; the NH<sub>3</sub> intercalate of

TABLE 1 Crystal Data of the Hosts for Intercalation (from Literature and the NH3 Intercalates of This Study

|                         | u(Å)  | <i>c</i> (Å) |                                     | <i>a</i> (Å) |          |
|-------------------------|-------|--------------|-------------------------------------|--------------|----------|
| <br>1T-TaS <sub>2</sub> | 3.365 | 5.896        | 3R-TaS2NH3                          | 3.380(1)     | 27.67(2) |
| IT-VS <sub>2</sub>      | 3.221 | 5.755        | 3R-VS <sub>2</sub> NH <sub>3</sub>  | 3.250(1)     | 27.37(2) |
| T-TiS <sub>2</sub>      | 3.407 | 5.695        | 3R-TiS2NH3                          | 3.428(1)     | 27.05(3) |
| 2H-TaS <sub>2</sub>     | 3.316 | 12.070       | 2H-TaS <sub>2</sub> NH <sub>3</sub> | 3.311(1)     | 18.28(2) |
|                         |       |              |                                     |              |          |

Note. Standard deviations in parentheses.

TABLE II Observed and Calculated X-Ray Powder Data of 3R-VS2NH3

| d <sub>obs</sub> (Å) | $d_{\text{calc}}$ (Å) | I <sub>obs</sub> | Icalc | hkl  |
|----------------------|-----------------------|------------------|-------|------|
| 9.214                | 9.124                 | 100              | 100   | 003  |
| 4.586                | 4.562                 | 5                | 3     | 006  |
| 3.042                | 3.042                 | 1                | 1     | 009  |
| 2.762                | 2.757                 | 20               | 7     | 012  |
| 2.591                | 2.063                 | 1                | 1     | 104  |
| 2.507                | 2.503                 | 50               | 22    | 015  |
| 2.280                | 2.281                 | 1                | <1    | 0012 |
| 2.175                | 2.174                 | 20               | 11    | 018  |
| 1.964                | 1.962                 | 10               | 5     | 1010 |
| 1.865                | 1.864                 | 1                | 2     | 0111 |
| 1.687                | 1.686                 | 10               | 6     | 1013 |
| 1.625                | 1.625                 | 10               | 5     | 110  |
| 1.599                | 1.599                 | 10               | 4     | 113  |
| 1.519                | 1.521                 | 1                | 1     | 0018 |
| 1.462                | 1.462                 | 1                | 1     | 1016 |
| 1.399                | 1.400                 | 1                | <1    | 202  |
| 1.364                | 1.363                 | 1                | 2     | 205  |
| 1.301                | 1.302                 | 1                | 2     | 208  |
| 1.110                | 1.110                 | 1                | 1     | 1118 |
|                      |                       |                  |       |      |

*Note.* Debye-Scherrer camera, CuK $\alpha$  radiation. Atoms: V at (0, 0, 0); S at  $\pm$ (0, 0, 0.385); NH<sub>3</sub> at  $\pm$ (0, 0, 0.1667) occupied for one-half; space group  $R\overline{3}m$ . a = 3.250(1) Å, c = 27.37(2) Å.

1T-TaS<sub>2</sub> was always found to be contaminated by the host. The cell constants of the intercalates point to the same structure as other 1T-TX<sub>2</sub> intercalates, viz., 3R- $TiS_2NH_3$  (7) and  $3R-ZrS_2NH_3$  (18). The structures of 3R-TiS<sub>2</sub>NH<sub>3</sub> and isotypes and 2H-TaS<sub>2</sub>NH<sub>3</sub> together with the host lattices of 1T-TiS<sub>2</sub> and 2H-TaS<sub>2</sub> are shown in Fig. 1. The coordination of the transition metal in the intercalates is the same as in the host. It is seen that the sandwiches are displaced so that NH<sub>3</sub> resides in the trigonal-prismatic holes between sulfur layers of neighboring sandwiches. The resulting structures are rhombohedral, space group  $R\overline{3}m$  or R3m, in the case of the 1T-TX<sub>2</sub> intercalates and hexagonal, space group  $P6_3/mmc$  or  $P6_3mc$ in the case of 2H-TaS<sub>2</sub>NH<sub>3</sub>. The choice between the possible space groups depends upon the occupation of the two trigonalprismatic sites in the gap. When only one of these sites is occupied, then the structures have the noncentrosymmetric space groups. In the case that both sites are occupied statistically (for one-half) the centrosymmetric space groups must he adopted. Since the van der Waals diameter of a  $NH_3$  molecule is 3.35 Å (the N-N distance in solid  $ND_3$  (19)), the distance between the centers of the two trigonalprismatic sites being  $\frac{1}{3} a\sqrt{3} = 2.0$  Å, it may safely be assumed that neighboring sites generally are not occupied simultaneously. Because of the equivalence of the two sites it is expected that domains corresponding to the two possible occupancies are present in a crystallite. X-ray powder diffraction

TABLE III

Observed and Calculated X-Ray Powder Data of 3R-TaS<sub>2</sub>NH<sub>3</sub>

| d <sub>obs</sub> (Å) | d <sub>calc</sub> (Å) | Iobs | I <sub>calc</sub> | hkl  |
|----------------------|-----------------------|------|-------------------|------|
| 9.117                | 9.224                 | 100  | 100               | 003  |
| 4.662                | 4.612                 | 20   | 11                | 006  |
| 3.068                | 3.075                 | 1    | 2                 | 009  |
| 2.907                | 2.911                 | 10   | 8                 | 101  |
| 2.861                | 2.864                 | 20   | 15                | 012  |
| 2.694                | 2.696                 | 5    | 5                 | 104  |
| 2.588                | 2,588                 | 20   | 19                | 015  |
| 2.352                | 2.353                 | 10   | 7                 | 107  |
| 2.309                | 2.306                 | 5    | 2                 | 0012 |
| 2.237                | 2.235                 | 10   | 10                | 018  |
| 2.013                | 2.011                 | 10   | 7                 | 1010 |
| 1.904                | 1.908                 | 5    | 4                 | 0111 |
| 1.845                | 1.845                 | 5    | 1                 | 0015 |
| 1.721                | 1.722                 | 10   | 5                 | 1013 |
| 1.689                | 1.690                 | 10   | 5                 | 110  |
| 1.660                | 1.662                 | 10   | 6                 | 113  |
| 1.586                | 1.587                 | 5    | 3                 | 116  |
| 1.537                | 1.537                 | 5    | 1                 | 0018 |
| 1.488                | 1.489                 | 5    | 2                 | 1016 |
| 1.457                | 1.456                 | 5    | 2                 | 202  |
| 1.417                | 1.415                 | 5    | 2                 | 205  |
| 1.347                | 1.348                 | 1    | 1                 | 208  |
| 1.248                | 1.246                 | 1    | 2                 | 1115 |
|                      |                       |      |                   |      |

*Note.* Debye-Scherrer camera, CuK $\alpha$  radiation. Atoms: Ta at (0, 0, 0); S at  $\pm$ (0, 0, 0.389); NH<sub>3</sub> at  $\pm$ (0, 0, 0.167) occupied for one-half. Space group  $R\overline{3}m$ . a = 3.380(1) Å, c = 27.67(2) Å. cannot give conclusive information regarding these possibilities because of the rather small difference in the powder intensities for the centrosymmetric and noncentrosymmetric space groups. From neutron powder diffraction of 2H-TaS<sub>2</sub>ND<sub>3</sub> (8, 9) and 3R-TiS<sub>2</sub>ND<sub>3</sub> (10) it was found that both sites are occupied statistically.

#### **Magnetic Measurements**

Magnetic measurements of NH<sub>3</sub> intercalates were obtained in the temperature range 4.2 to 300 K, using techniques described before (20). The results are shown in Figs. 2-4. All phases show a Pauli paramagnetism of the conduction electrons plus possible contributions due to van Vleck type band paramagnetism. While these are almost temperature independent in the case of 1-TiS<sub>2</sub>, 2H-TaS<sub>2</sub>, and the corresponding intercalates with NH<sub>3</sub> (Figs. 3 and 4), a significant paramagnetic upturn at decreasing temperature is observed in the molar magnetic susceptibility ( $\chi_m$ ) versus temperature curves of 1T-VS<sub>2</sub> and 3R-VS<sub>2</sub>NH<sub>3</sub> (Fig. 2). From the measured curves, it may be concluded that the same kind of contributions are acting in 1T-VS<sub>2</sub> and 3R- $VS_2NH_3$ . If a paramagnetic contribution



FIG. 2. Molar magnetic susceptibility  $(\chi_m)$  versus temperature of 1T-VS<sub>2</sub> powder ( $\odot$ , lower curve) and 3R-VS<sub>2</sub>NH<sub>3</sub> powder ( $\Box$ , upper curve) for an applied field of 8.75 kOe.



FIG. 3. Molar magnetic susceptibility  $(\chi_m)$  versus temperature of 1T-TiS<sub>2</sub> powder ( $\odot$ , lower curve) and 3R-TiS<sub>2</sub>NH<sub>3</sub> powder ( $\Box$ , upper curve) for an applied field of 8.75 kOe.

from interlayer  $V^{2+}(3d^3)$  is assumed, the measured  $\chi_m$  can be written as a sum of an intrinsic part  $\chi_i$  and a paramagnetic Curie term  $\chi_p = C/T$ ; C = 1.875 for spin-only  $V^{2+}$  $(S = \frac{3}{2})$ . Nearly temperature independent susceptibilities are obtained after correcting the total susceptibility of each of the samples for paramagnetic contributions of 0.23 at.% of interlayer  $V^{2+}$ .

Similar considerations, i.e., assuming interlayer  $Ti^{2+}$  (discussed in our paper on 1T-TiS<sub>2</sub> and 2H-TiS<sub>2</sub> (21)), account for the relatively small paramagnetic upturn ob-



FIG. 4. Molar magnetic susceptibility  $(\chi_m)$  versus temperature of 2H-TaS<sub>2</sub> powder  $(\odot, \text{ upper curve})$  and 2H-TaS<sub>2</sub>NH<sub>3</sub> powder  $(\Box, \text{ lower curve})$  for an applied field of 8.75 kOe.

served below 50 K in  $\chi_m$  of 1T-TiS<sub>2</sub> and 3R-TiS<sub>2</sub>NH<sub>3</sub> (Fig. 3).

Our  $\chi_m$  versus temperature curves of 1T-VS<sub>2</sub> and 3R-VS<sub>2</sub>NH<sub>3</sub> do not show CDW/ PLD type transitions; the transition found by Murphy *et al.* (17) of 1T-VS<sub>2</sub> at 305 K is just outside the temperature range of our measurements. Intercalates Li<sub>x</sub>VS<sub>2</sub> show an increase in  $\chi$  for small amounts of lithium but a complicated behavior of  $\chi$  with temperature for larger Li content (17). Intercalation of 1T-TiS<sub>2</sub> with alkali metal also leads to an increase in  $\chi$ .

The magnetic susceptibility versus temperature curve of 2H-TaS<sub>2</sub> shows an anomaly at 78 K due to a CDW/PLD transition (22). The disappearance of the anomaly and the simultaneous decrease in  $\chi_m$  on intercalation with NH<sub>3</sub> (Fig. 4) was also observed by Schöllhorn and Zagefka (4). The  $\chi_m$  versus temperature curve of 2H-TaS<sub>2</sub> obtained by deintercalation of 2H-TaS<sub>2</sub>NH<sub>3</sub> during 2 hr at 450 K in vacuo (data points not shown) follows that of  $2H-TaS_2$  quite closely; the anomaly at 78 K is smeared out, but the onset temperature is not reduced. X-ray powder diffraction of 2H-TaS<sub>2</sub> obtained by deintercalation showed broad diffraction lines due to small particle size and/or disorder introduced during intercalation and deintercalation. Our magnetic measurements exclude the possibility of formation of a hydrogen intercalate  $H_xTaS_2$  on heating the NH<sub>3</sub> intercalate in vacuo; such a hydrogen intercalate can be prepared by cathodic reduction of 2H-TaS<sub>2</sub> (23).

No measurements were made of the  $NH_3$ intercalate of 1T-TaS<sub>2</sub>, because the sample obtained on intercalation consisted of a two-phase mixture of the intercalate and 1T-TaS<sub>2</sub>.

The changes in  $\chi_m$  of different host dichalcogenides on intercalation with NH<sub>3</sub> can be understood qualitatively from the band structure of the hosts, considering that the Pauli  $\chi_m$  is proportional to the total density of states at the Fermi surface  $(N(E_F))$  and assuming a rigid band formalism. In the rigid band formalism one assumes that the band structure of the host is not changed on intercalation and that the only change is the filling of the lowest lying unoccupied or partly filled band by electrons from the intercalant.

From band structure calculations of 1T- $TiS_2$  (24), 1T-VS<sub>2</sub> (25), and 2H-TaS<sub>2</sub> (26), one finds that on electron donation the total density of states at  $E_{\rm F}$  will increase for 1T-TiS<sub>2</sub> and 1T-VS<sub>2</sub> and decrease for 2H- $TaS_2$ . Schematic density of states versus energy plots are shown in Fig. 5; the symmetry characters are those at  $\Gamma$  in the Brillouin zone. In these schematic density of states plots the  $e_g$  conduction band of  $1T-TiS_2$  is empty while the conduction band of  $1T-VS_2$  and  $2H-TaS_2$ , respectively,  $a_{1g}$ (mainly  $3d_{z^2}$ ) and  $a'_1$  (mainly  $5d_{z^2}$ ) are halffilled. From these simple schemes one expects on electron donation a decrease of  $N(E_F)$  in the case of 2H-TaS<sub>2</sub> and 1T-VS<sub>2</sub> and an increase in  $N(E_F)$  for 1T-TiS<sub>2</sub>. A comparison with the total density of states versus energy plot given by Myron (25) shows, however, that on intercalation of  $1T-VS_2$  with electron donating species,  $N(E_F)$  will increase.

The observed trends in  $\chi_m$  of the NH<sub>3</sub> intercalates, corresponding to a lowering of N( $E_F$ ) in the case of 2H-TaS<sub>2</sub> and to an increase in N( $E_F$ ) for 1T-TiS<sub>2</sub> and 1T-VS<sub>2</sub>, are therefore in agreement with electron donation of intercalated NH<sub>3</sub>.

Johnston (27) analyzed the magnetic susceptibility data of a number of intercalates of 2H-TaS<sub>2</sub> quantitatively on the basis of the rigid band model. He deduced for the NH<sub>3</sub> intercalate an electron transfer of 0.28 electron per Ta which agrees with the value of 0.25 electron per Ta found by Butz and Lerf (28) from the shift in the <sup>181</sup>Ta nuclear quadrupole frequency of 2H-TaS<sub>2</sub>NH<sub>3</sub> with respect to that of 2H-TaS<sub>2</sub>. About the same fraction of charge per intercalated NH<sub>3</sub> fol-



FIG. 5. Schematic band models with density of state versus energy diagrams of (a) 1T-TiS<sub>2</sub>, lowest d band ( $e_g$ ) unoccupied; (b) 1T-VS<sub>2</sub>, one electron in the lowest d band ( $a_{1g}$ ); and (c) 2H-TaS<sub>2</sub>, lowest d band ( $a'_1$ ) half-filled.

lowed from the experiments performed by Bernard (6) on  $3R-TiS_2NH_3$  discussed in the Introduction.

#### References

- 1. M. S. WHITTINGHAM, Prog. Solid State Chem. 29, 303 (1979).
- G. V. SUBBA RAO AND M. W. SHAFER, "Physics and Chemistry of Layered Materials" (F. Levy, Ed.), Vol. 6, p. 99, Reidel Dordrecht (1979).
- 3. R. Schöllhorn, H. D. ZAGEFKA, T. BUTZ, AND A. LERF, "Intercalation Chemistry" (M. S. Whittingham and A. J. Jacobson, Ed.), Academic Press, New York (1982).
- 4. R. SCHÖLLHORN AND H. D. ZAGEFKA, Angew. Chem. Intern. Ed. 16, 199 (1977).
- 5. R. SCHÖLLHORN, H. D. ZAGEFKA, T. BUTZ, AND A. LERF, *Mat. Res. Bull.* **14**, 369 (1979).
- L. BERNARD, M. MCKELVY, W. GLAUNSINGER, AND P. COLOMBET, Solid State Ionics 15, 301 (1985).
- 7. R. CHIANELLI, J. C. SCANLON, M. S. WHIT-TINGHAM, AND F. R. GAMBLE, *Inorg. Chem.* 14, 1691 (1975).
- 8. C. RIEKEL AND R. SCHÖLLHORN, Mat. Res. Bull. 11, 369 (1976).
- 9. C. RIEKEL, Prog. Solid Chem. 33, 89 (1982).
- 10. H. J. M. BOUWMEESTER AND G. A. WIEGERS, J. Solid State Chem., in press.
- 11. F. R. GAMBLE AND B. G. SILBERNAGEL, J. Chem. Phys. 63, 2544 (1975).
- 12. B. G. SILBERNAGEL AND F. R. GAMBLE, *Phys. Rev. Lett.* 32, 1436 (1974).
- 13. B. G. SILBERNAGEL, M. B. DINES, F. R. GAMBLE,

L. A. GEBHARD, AND M. S. WHITTINGHAM, J. Chem. Phys. 65, 1906 (1976).

- 14. R. L. KLEINBERG AND B. G. SILBERNAGEL, Solid State Commun. 33, 867 (1980).
- C. RIEKEL, H. HEIDEMANN, B. E. F. FENDER, AND G. C. STIRLING, J. Chem. Phys. 71, 530 (1979).
- 16. C. RIEKEL, H. G. REZNIK, R. SCHÖLLHORN, AND C. J. WRIGHT, J. Chem. Phys. 70, 5203 (1979).
- D. W. MURPHY, C. CROSS, F. J. DISALVO, AND J. V. WASZCZAK, *Inorg. Chem.* 16, 3027 (1977).
- 18. J. COUSSEAU, L. TRICHET, AND J. ROUXEL, Bull. Soc. Chim. Fr. 3, 872 (1973).
- J. M. REED AND P. M. HARRIS, J. Chem. Phys. 35, 1730 (1961).
- 20. R. BERGER AND C. F. VAN BRUGGEN, J. Less-Common Met. 99, 113 (1984).
- 21. G. A. WIEGERS, R. J. HAANGE, AND C. F. VAN BRUGGEN, Synth. Met. 9, 9 (1984).
- 22. A. H. THOMPSON, F. R. GAMBLE, AND R. F. KOEHLER, *Phys. Rev. B* 5, 2811 (1972).
- 23. C. RIEKEL, H. G. REZNIK, R. SCHÖLLHORN, AND C. J. WEIGHT, J. Chem. Phys. 70, 5203 (1979).
- A. ZUNGER AND A. J. FREEMAN, *Phys. Rev. B* 16, 906 (1977); D. W. BULLETT, *J. Phys. C* 11, 4501 (1978); C. UMRIGER, D. E. ELLIS, D. WONG, H. KRAKAUER, AND M. PASTERNAK, *Phys. Rev. B* 26, 4935 (1982).
- 25. H. W. MYRON, Physica B 99, 243 (1980).
- L. F. MATTHEIS, *Phys. Rev. B* 8, 3719 (1973); G.
  WEXLER AND A. M. WOOLEY, *J. Phys. C* 9, 1185 (1976).
- 27. D. C. JOHNSTON, Solid State Commun. 43, 533 (1982).
- T. BUTZ AND A. LERF, Rev. Chim. Miner. Fr. 19, 496 (1982).